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Abstract
Sequential recommendation aims to capture user preferences by
modeling sequential patterns in user-item interactions. However,
these models are often influenced by noise such as accidental in-
teractions, leading to suboptimal performance. Therefore, to re-
duce the effect of noise, some works propose explicitly identify-
ing and removing noisy items. However, we find that simply rely-
ing on collaborative information may result in an over-denoising
problem, especially for cold items. To overcome these limitations,
we propose a novel framework: Interest Alignment for Denois-
ing Sequential Recommendation (IADSR) which integrates both
collaborative and semantic information. Specifically, IADSR is com-
prised of two stages: in the first stage, we obtain the collabora-
tive and semantic embeddings of each item from a traditional
sequential recommendation model and an LLM, respectively. In
the second stage, we align the collaborative and semantic embed-
dings and then identify noise in the interaction sequence based
on long-term and short-term interests captured in the collabora-
tive and semantic modalities. Our extensive experiments on four
public datasets validate the effectiveness of the proposed frame-
work and its compatibility with different sequential recommenda-
tion systems. The code and data are released for reproducibility:
https://github.com/Applied-Machine-Learning-Lab/IADSR.
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1 Introduction
In recent years, recommender systems have become indispens-
able components of modern digital platforms, serving as essential
tools to alleviate information overload and enhance user expe-
rience across diverse domains such as news [52], entertainment
services [2] and social media [87]. Among various recommendation
tasks, sequential recommendation has gained considerable atten-
tion since it aims to capture the temporal dynamics of user behavior
and sequential dependencies in interaction histories [15, 45, 84],
enabling more accurate and dynamic predictions of future inter-
actions [72]. Recent advances in denoising sequential recommen-
dation have explored diverse neural architectures, including Re-
current Neural Networks (RNNs) [13, 29], convolutional neural
network (CNNs) [58, 68], Graph Neural Networks (GNNs) [14, 76],
and Transformer-based models [30, 32, 44, 57]. However, these
approaches primarily focus on improving recommendation per-
formance through architectural modifications, without explicitly
addressing the inherent noise present in interaction sequences.

Therefore, despite remarkable progress, sequential recommen-
dation faces significant challenges in real-world applications due
to noisy interactions [61]. Specifically, Such noise includes acci-
dental clicks [74], exploratory behaviors, or interactions that do
not reflect true user preferences [25, 49, 77]. This problem is ex-
acerbated in sequential scenarios as noise propagates through the
modeling process [8, 17, 19], potentially leading to misinterpreted
user intentions [9, 76]. The presence of noisy interactions could se-
verely distort the learned user preferences and sequential patterns,
ultimately degrading recommendation quality [27, 40, 47].

To address this challenge, denoising sequential recommenda-
tion has emerged as a promising research direction [35]. Early
approaches primarily focused on identifying and filtering noisy
interactions based on collaborative signals derived from user-item
interaction matrices [12, 37, 60] (e.g., directly removing identified
noisy interactions [64, 71], or replace noisy items with alternative
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Figure 1: Performance of HSD, STEAM, and our proposed
IADSR on Beauty dataset. Item bucket ID from 1 to 5 denotes
hot to cold. The denoising ratio represents the percentage
of items removed as noise, and the recommendation model
used for comparison is GRU4Rec.

items that better align with the user’s established preference pat-
terns [40, 75, 76]). These tasks leverage patterns in collective user
behaviors to distinguish real preferences from noise and aim to
capture better user preferences and behavioral patterns embedded
within historical interaction sequences, thereby enhancing recom-
mendation accuracy and relevance [79]. However, relying solely
on collaborative information presents inherent limitations, partic-
ularly for cold items with sparse interaction histories [55, 69, 81].
Without leveraging content features, these models lack contextual
understanding of interactions, making it difficult to differentiate
between real user preferences and random behaviors [11, 16, 28].
Consequently, it could lead to over-denoising issues, i.e., a large
proportion of cold items would be identified as noise and removed,
which potentially dampens the denoising performance.

To illustrate the potential over-denoising, we conducted a pre-
liminary analysis of the denoising ratio and accuracy across all the
items. The denoising ratio refers to the proportion of items in the
original interaction sequence that are identified as noise by each
method. As shown in Figure 1, we compared the denoising ratios
and recommendation performance of HSD [75], STEAM [40], and
IADSR on the Beauty dataset. We divided the original sequence
into five equal-frequency buckets based on item popularity (from
hot to cold items) and then evaluated the recommendation accu-
racy using NDCG@5 on each bucket. The blue bars represent the
denoising ratio applied by each method, while the line graphs illus-
trate the recommendation performance. The blue curve represents
the results tested with the GRU4Rec model. We can observe that
across all methods, as item popularity decreases from bucket 1
(hottest) to bucket 5 (coldest), recommendation performance sig-
nificantly declines. This uniform filtering process fails to account
for the unique characteristics of cold items, potentially removing
interactions that may seem unreasonable from a purely collabo-
rative perspective but could actually reflect real user interests in
less popular items [10, 31, 76]. However, IADSR performs better
than baseline approaches, particularly for cold items. While the
absolute improvement may appear larger on popular items due
to their higher baseline performance, the relative improvement of
IADSR is actually more pronounced for cold items. By preserving
more useful information during the denoising process for these less
popular items, IADSR achieves consistently better recommendation
accuracy across all buckets, with the advantage becoming more
pronounced for the coldest items in buckets 4 and 5.

Therefore, relying solely on collaborative signals may be insuf-
ficient [51, 59, 85], and we consider leveraging the textual infor-
mation of items to address this limitation. Large Language Models

(LLMs), which have gained tremendous popularity in recent years,
can effectively complement this aspect [1, 46, 82]. We can utilize
LLMs to generate embeddings of textual information and combine
them with traditional collaborative information for denoising [3].
By aligning embeddings from both modalities, we attempt to better
capture users’ genuine preferences.

Consequently, we present IADSR, a novel two-stage denoising
framework that effectively integrates semantic information from
LLMs with collaborative signals for enhanced denoising. Our frame-
work operates through two distinct stages: (1) dual representation
learning, where we independently obtain item embeddings from
both LLMs and traditional sequential models; (2) cross-modal align-
ment and noise identification, where we leverage long-term and
short-term user interests to detect and filter noisy interactions.

The main contributions of this paper are as follows.
• We propose IADSR, a novel denoising paradigm for sequential
recommendation compatible with diverse backbone models and
achieving performance enhancement.

• The proposed framework combines LLMs with sequential recom-
mendation without fine-tuning.

• Experiments on four public datasets, i.e., Amazon Beauty, Sports,
Toys, and MovieLens-100K, have demonstrated the effectiveness
of our proposed method.

2 Preliminary
In this section, we introduce the basic notations and definitions
used throughout this work.

2.1 Sequential Recommendation
LetU = {𝑢1, 𝑢2, ..., 𝑢𝑚} denotes the set of users andI = {𝑖1, 𝑖2, ..., 𝑖𝑛}
denotes the set of items. For each user 𝑢 ∈ U its interaction se-
quence 𝑆𝑢 = [𝑖𝑢1 , 𝑖𝑢2 , ..., 𝑖𝑢𝑡 ] is sorted in ascending order by time,
where 𝑖𝑢𝑗 ∈ I represents the 𝑗-th item that user 𝑢 has interacted
with. The goal of sequential recommendation is to predict the next
item 𝑖𝑢𝑡+1 that user 𝑢 is likely to interact with based on 𝑆𝑢 .

Formally, let ŷ𝑢 ∈ R |𝐼 | denote the prediction scores for all items
in the item set 𝐼 , where each element 𝑦𝑢𝑖 represents the predicted
probability that user 𝑢 will interact with item 𝑖 next. The ground
truth is typically represented as a one-hot encoded vector y𝑢 , where
𝑦𝑢𝑖 = 1 if item 𝑖 is the actual next item in the sequence (𝑖 = 𝑖𝑢𝑡+1),
and 𝑦𝑢𝑖 = 0 otherwise.

The Cross-Entropy loss function is then defined as:

L𝐶𝐸 = −
∑︁
𝑢∈U

∑︁
𝑖∈I

𝑦𝑢𝑖 log(𝑦𝑢𝑖 ) (1)

This loss function encourages the model to assign a high proba-
bility to the correct next item. However, in the presence of noisy
interactions in the sequence, optimizing solely based on this loss can
lead the model to learn patterns from noise, potentially degrading
recommendation performance.

2.2 Denoising Sequential Recommendation
In the denoising sequential recommendation task, for a user 𝑢 with
interaction sequence 𝑆𝑢 = [𝑖𝑢1 , 𝑖𝑢2 , ..., 𝑖𝑢𝑡 ], we need to identify and
remove the noise interactions:

𝑆𝑢
𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑

= 𝑆𝑢 \ 𝑆𝑢𝑛𝑜𝑖𝑠𝑒 (2)
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Figure 2: Overview of the IADSR framework. The black arrow denotes the data flow. The blue and green color denotes semantic
and collaborative modality, respectively.

where 𝑆𝑢
𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑

contains interactions that truly represent user 𝑢’s
preferences, and 𝑆𝑢𝑛𝑜𝑖𝑠𝑒 consists of noisy interactions that may mis-
lead the recommendation model [56, 62].

3 Method
In this section, an overview of the proposed framework is first
provided, followed by details of different modules.

3.1 Overview
In this section, we introduce the overall framework of IADSR, which
employs a two-stage framework to enhance recommendation qual-
ity by identifying and removing noise from user interaction se-
quences. As depicted in Figure 1, in the first stage we construct
item embeddings from two distinct sources by processing raw user
sequences through parallel paths: (1) extracting semantic repre-
sentations via LLM encoding of textual descriptions, generating
comprehensive semantic understanding [20, 24, 43]; (2) learning
collaborative patterns through traditional sequential models using
item ID representations. These complementary embeddings capture
both content semantics and user behavior patterns [42, 78]. In the
second stage, we align the collaborative and semantic embeddings
through cosine similarity measures to identify noise in user se-
quences [80]. We compute similarity scores between long-term and
short-term interest representations from both embedding spaces,
then apply a Gumbel-Sigmoid function to generate binary masks
indicating noisy items.

3.2 Semantic Encoding
Previous studies have not focused on extracting semantic infor-
mation, possibly due to high computational costs and insufficient
world knowledge. Recently, Large Language Models (LLMs) have
demonstrated remarkable capabilities in understanding text across
diverse domains [36]. However, these decoder-only architectures
exhibit limitations in encoding capabilities, as they are optimized

for generation rather than representation [7]. In recommender sys-
tems, while LLMs can extract semantic information from text, their
architectural constraints may result in suboptimal embeddings com-
pared to dedicated encoding frameworks [34].

For our approach, we employ LLM2Vec [5] to generate seman-
tic embeddings for each item. Specifically, LLM2Vec addresses the
encoding limitations of decoder-only Large Language Models by
efficiently extracting high-quality semantic embeddings that cap-
ture nuanced user preferences from textual descriptions, enhancing
recommender systems with encoder capabilities. This enables the
extraction of high-quality semantic embeddings without additional
fine-tuning, making it ideal for our recommendation scenario.

For each item 𝑖 ∈ I, we obtain its item name 𝑍𝑖 and process it
through LLM2Vec to generate semantic embeddings:

e𝐿𝐿𝑀𝑖 = LLM2Vec(𝑍𝑖 ) (3)

where e𝐿𝐿𝑀𝑖 ∈ R𝑑 is the semantic embedding vector of item 𝑖 with
dimension 𝑑 , and LLM2Vec(·) represents the encoding function
that maps item names to dense vector embeddings.

These LLM-integrated embeddings capture semantic relation-
ships between items based on their names, offering rich comple-
mentary information to collaborative signals. Even with just the
item name, the semantic embeddings effectively capture product
categories and attributes through the pre-trained knowledge em-
bedded in the LLM. This approach is particularly valuable for cold
items with limited interaction histories, as it allows the model to
better infer item similarities from semantic meaning rather than
relying solely on interaction patterns.

3.3 Interest Alignment
Despite differences between collaborative and semantic modalities
in their representational spaces, we posit that for any given user,
their fundamental interests should remain consistent regardless
of which modality is used to represent them [83]. Both modalities
ultimately attempt to capture the same underlying user interests.
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In order to effectively leverage both semantic and collaborative
information for optimal merging, we first organize user interests
into long-term and short-term embeddings and then systematically
align these interests across modalities.

3.3.1 Interest Representation For each user 𝑢 with interaction
sequence 𝑆𝑢 = {𝑖𝑢1 , 𝑖𝑢2 , . . . , 𝑖𝑢𝑛 }, we structure their interests as:

Long-term Interests: The long-term interest represents a com-
prehensive view of the user’s preferences across their entire in-
teraction history. Rather than encoding each item separately, we
encode the complete sequence of user interactions directly:

e𝑢1 = LLM2Vec(𝑆𝑢 ) (4)

where LLM2Vec(𝑆𝑢 ) processes the entire interaction sequence as a
single input, capturing the holistic semantic meaning of the user’s
complete interaction history.

Short-term Interests: The short-term interests capture the
evolving preferences at different time steps. For each time step 𝑡 ,
we independently encode the partial sequence up to that point:

l𝑢𝑡 = LLM2Vec(𝑆𝑢𝑡 ), ∀𝑡 ∈ {1, 2, . . . , 𝑛 − 1} (5)

where 𝑆𝑢𝑡 = {𝑖𝑢1 , 𝑖𝑢2 , . . . , 𝑖𝑢𝑡 } is the complete subsequence of interac-
tions up to time step 𝑡 . This results in a total of𝑛−1 distinct separate
encodings, each representing the user’s interests at a different point
in their interaction history.

Similarly, for the collaborative interests derived from the sequen-
tial recommendation models:

e𝑢2 = SRS(𝑆𝑢 ) (6)

h𝑢𝑡 = SRS(𝑆𝑢𝑡 ), ∀𝑡 ∈ {1, 2, . . . , 𝑛 − 1} (7)
where SRS(·) represents the encoding function of the sequential
recommendation models.

In summary, we extract two types of interest embeddings:
• Semantic Interests: Long-term semantic interest e𝑢1 and cor-
responding short-term semantic interests {l𝑢1 , l𝑢2 , . . . , l𝑢𝑛−1} effec-
tively derived from LLM embeddings.

• Collaborative Interests: Long-term collaborative interest e𝑢2
and short-term collaborative interests {h𝑢1 , h𝑢2 , . . . , h𝑢𝑛−1} derived
from the sequential model.

3.3.2 Cross-Modal Interest Alignment To effectively combine
the strengths of both semantic and collaborative information, we
align these interest embeddings using InfoNCE loss [21, 50]. This
alignment maximizes the mutual information between correspond-
ing interest embeddings from different modalities [54].

The InfoNCE loss for interest alignment is formulated as:

L𝐼𝑛𝑓 𝑜 = L𝑙𝑜𝑛𝑔 + L𝑠ℎ𝑜𝑟𝑡 (8)

L𝑙𝑜𝑛𝑔 = − 1
𝑁

𝑁∑︁
𝑖=1

log
𝑒𝑠𝑖𝑚 (e𝑖2,e

𝑖
1 )/𝜏∑𝑁

𝑗=1 𝑒
𝑠𝑖𝑚 (e𝑖2,e

𝑗
1 )/𝜏

(9)

L𝑠ℎ𝑜𝑟𝑡 = − 1
𝑀

𝑀∑︁
𝑖=1

log
𝑒𝑠𝑖𝑚 (h𝑖 ,l𝑖 )/𝜏∑𝑀
𝑗=1 𝑒

𝑠𝑖𝑚 (h𝑖 ,l𝑗 )/𝜏
(10)

where 𝑁 denotes the batch size, representing the number of users
processed in each training iteration and 𝑀 represents the total
number of short-term interest embeddings in the batch, 𝑠𝑖𝑚(·, ·)
is the cosine similarity function and 𝜏 is a temperature parameter.
Specifically, L𝑙𝑜𝑛𝑔 represents the alignment loss between long-term

semantic interest e𝑢1 and long-term collaborative interest e𝑢2 , while
L𝑠ℎ𝑜𝑟𝑡 represents the alignment loss between short-term semantic
interests {l𝑢1 , l𝑢2 , . . . , l𝑢𝑛−1} and short-term collaborative interests
{h𝑢1 , h𝑢2 , . . . , h𝑢𝑛−1}.

Through this alignment process, IADSR creates unified interest
embeddings that leverage both the semantic understanding from
LLMs and the collaborative patterns from sequential models, pro-
viding a more comprehensive basis for subsequent noise detection.

3.4 Sequence Denoising
After aligning interest embeddings across modalities, we proceed
to identify and then filter out noise in user interaction sequences.
This is particularly difficult since noise is often contextual and
user-dependent without explicit labels. IADSR leverages the com-
plementary nature of semantic and collaborative embeddings to
distinguish real user preferences from noise that the traditional
single-modal approaches might miss.

For each user 𝑢, we compute the cosine similarity between their
long-term collaborative interest e𝑢2 and the corresponding long-
term semantic interest e𝑢1 :

sim𝑙𝑜𝑛𝑔 (𝑢) = cos(e𝑢1 , e𝑢2 ) (11)

Users whose cross-modal similarity 𝜆 exceeds a threshold 𝜃
proceed to the detailed noise detection stage:

qualified(𝑢) = 1[sim𝑙𝑜𝑛𝑔 (𝑢) ≥ 𝜃 ] (12)

where 1[·] is the indicator function. This preliminary filtering en-
sures that we only apply denoising to users whose embeddings show
sufficient cross-modal consistency, avoiding potentially harmful
modifications to sequences where modality alignment is poor.

3.4.1 Item-level Noise Detection For qualified users, we perform
item-level noise detection by examining the consistency between
different interest embeddings. For each time step 𝑡 in the qualified
user’s sequence, we compute three similarity scores between the
corresponding interest embeddings as (𝑐1, 𝑐2, 𝑐3):

𝑐1 (𝑡) = cos(e𝑢1 , h𝑢𝑡 ) (13)
𝑐2 (𝑡) = cos(e𝑢2 , l𝑢𝑡 ) (14)
𝑐3 (𝑡) = cos(h𝑢𝑡 , l𝑢𝑡 ) (15)

These scores respectively measure: (1) the semantic long-term
to collaborative short-term consistency, (2) the collaborative long-
term to semantic short-term consistency, and (3) the overall short-
term cross-modal consistency. This design ensures that potential
noise can be detected from complementary perspectives across
modalities and interest levels. We combine these scores to obtain a
comprehensive noise indicator:

score(𝑡) = 𝑐1 (𝑡) + 𝑐2 (𝑡) + 𝑐3 (𝑡) (16)

3.4.2 Mask Generation via Gumbel-Sigmoid To convert the
continuous noise scores into binary denoising decisions, we employ
the robust Gumbel-Sigmoid function [41]. The Gumbel-Sigmoid
function enables differentiable binary sampling during training
by adding Gumbel noise to logits and applying a temperature-
controlled sigmoid function, allowing models to make discrete de-
cisions (like masking noise) while effectively maintaining gradient
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flow for end-to-end training [26, 48]:

𝑚𝑡 = GumbelSigmoid(score(𝑡), 𝜏, hard = True)

=

{
1[𝑦𝑡 > 0.5], if hard = True
𝑦𝑡 , if hard = False

(17)

𝑦𝑡 = 𝛿

(
score(𝑡) + 𝑔𝑡

𝜏

)
𝑔𝑡 = − log(− log(𝑈𝑡 + 𝜖) + 𝜖)
𝑈𝑡 ∼ Uniform(0, 1)

Here, 𝜏 is the temperature parameter controlling the smoothness
of the approximation, 𝛿 is the sigmoid function, 𝑈𝑡 is a uniform
random variable, and 𝜖 is a constant added for numerical stability.
When hard = True, we discretize the output to binary values while
preserving gradients through a straight-through estimator.

The resulting mask𝑚𝑡 ∈ {0, 1} indicates whether each interac-
tion should be preserved (1) or filtered out (0) as noise. By incorpo-
rating multiple similarity measures and maintaining differentiabil-
ity, our model can make effective discrete denoising decisions while
learning from its own denoising process through backpropagation.

The denoised sequence for user 𝑢 is then obtained by applying
the mask to the original sequence:

𝑆𝑢
𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑

= {𝑖𝑢𝑡 | 𝑚𝑡 = 1, 𝑡 = 1, 2, . . . , 𝑛} (18)

3.5 Sequence Reconstruction
To prevent the loss of critical signals from "over-denoising" (espe-
cially for cold items), we use a sequence reconstruction mechanism
to balance noise removal with the preservation of user preferences.

3.5.1 Progressive Denoising Process Our approach employs a
progressive denoising strategy across training epochs. For each user,
we apply the mask learned from the previous epoch to the original
sequence embeddings, preserving the model’s incremental learning
process while always anchoring to the original data. Formally, for
a user 𝑢 at epoch 𝑒:

X(𝑒 )
𝑢 = X𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑢 ⊙ K(𝑒−1)
𝑢 (19)

where X(𝑒 )
𝑢 represents the input sequence embedding at epoch 𝑒 ,

X𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
𝑢 is the original unmodified sequence embedding, K(𝑒−1)

𝑢 is
the binary mask generated from the previous epoch, and ⊙ denotes
element-wise multiplication. For the initial epoch (𝑒 = 0), we use
the original sequence without masking.

3.5.2 Decoder-based Reconstruction To ensure that the denois-
ing process preserves essential information, we employ a decoder to
reconstruct the original sequence from the denoised representation:

X̂𝑢 = Decoder(H𝑢 ⊙ K𝑢 ) (20)

where X̂𝑢 represents the reconstructed sequence embedding for
user 𝑢, H𝑢 represents the model’s hidden states (i.e., GRU output
embeddings), K𝑢 is the dynamically generated binary mask for the
current epoch, and ⊙ denotes element-wise multiplication. This
process effectively transforms the denoised hidden states back into
the original embedding space, allowing us to directly compare the
reconstruction with the original input embeddings.

Table 1: Experimental data statistics.
Dataset # Users # Items # Actions Avg. len Sparsity

Beauty 22,363 12,101 198,502 8.9 99.93%
Sports 35,598 18,357 296,337 8.3 99.95%
Toys 19,412 11,924 167,597 8.6 99.93%
ML-100K 943 1,682 100,000 106.0 93.70%

3.5.3 Reconstruction Loss To ensure our denoising process pre-
serves real user preferences while removing only truly noisy inter-
actions, we introduce a reconstruction objective that:
• Encourages selective denoising by penalizing the removal of real
preference signals.

• Provides additional training supervision that helps the model
learn more robust embeddings.

• Anchors the denoised embeddings to the original data, preventing
representation drift.
We implement this objective by systematically minimizing the

mean squared error between the reconstructed sequence and the
corresponding original sequence embeddings:

L𝑟𝑒𝑐𝑜𝑛 =
1

|U𝑚𝑎𝑠𝑘 |
∑︁

𝑢∈U𝑚𝑎𝑠𝑘

| |X̂𝑢 − X𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
𝑢 | |22 (21)

where U𝑚𝑎𝑠𝑘 represents the set of users who passed the initial
cross-modal consistency check. This squared L2 distance effectively
captures the overall reconstruction quality across all dimensions of
the embedding space.

The total loss for our model combines the three components:

L𝑡𝑜𝑡𝑎𝑙 = L𝐶𝐸 + L𝐼𝑛𝑓 𝑜 + L𝑟𝑒𝑐𝑜𝑛 (22)

where L𝐶𝐸 is the standard cross-entropy loss for next item predic-
tion,L𝐼𝑛𝑓 𝑜 is the interest alignment loss, andL𝑟𝑒𝑐𝑜𝑛 is the sequence
reconstruction loss.

4 Experiments
In this section, we present the experiment results on four public
datasets to validate the effectiveness of our methods. Our evaluation
is guided by the following research questions:
• RQ1: How does IADSR perform compared with the state-of-the-
art denoising baseline methods?

• RQ2: Is IADSR compatible with different sequential recommen-
dation models?

• RQ3:What impact do the proposed loss functions have on the
recommendation performance in IADSR?

• RQ4: How sensitive is IADSR to hyperparameters?
• RQ5: How do the introduced semantic embeddings contribute
to denoising in IADSR?

4.1 Experimental Setting
4.1.1 Datasets and Pre-processing We conduct experiments on
three domains of Amazon datasets and the MovieLens-100K dataset.
Their statistics are summarized in Table 1. Average length (Avg. len)
represents the mean number of interactions per user, reflecting the
length of user behavior sequences, ranging from approximately 8-9
interactions for Beauty, Sports, and Toys datasets to 106 interactions
for ML-100K. Sparsity indicates the gap between actual user-item
interactions and the theoretically maximum possible interactions
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in the user-item matrix, demonstrating that all datasets are highly
sparse, with Beauty, Sports, and Toys having approximately 99.9%
sparsity, while ML-100K is relatively less sparse at 93.7%.
• Amazon: We utilize three categories from the Amazon review
dataset: Beauty, Sports & Outdoors, and Toys & Games. For each
category, we followed the previous studies [4, 67, 73, 86] and
adopted the 5-core version where each user and item has at
least five interactions, ensuring sufficient sequential patterns
for modeling and reducing data sparsity. Each dataset contains
user-item interaction records with timestamps, allowing us to
construct highly meaningful temporal behavioral sequences. The
product metadata in these datasets enables the extraction of
semantic information through LLMs.

• MovieLens-100K: A widely-used benchmark dataset in the
movie recommendation domain, containing 100,000 ratings from
users on different movies. It offers a complementary domain to
e-commerce and features more structured item attributes.
For pre-processing, we follow the standard practices in sequential

recommendation as [57, 73, 76]. Specifically, each user’s interaction
sequence is sorted chronologically by timestamp to preserve the
temporal order of user behaviors. Based on the observed average
sequence lengths in the Amazon datasets, we set the maximum
sequence length to 32 for these datasets, while for MovieLens we
use a maximum length of 50 to ensure optimal performance.

4.1.2 Evaluation Metrics For evaluation, we adopt two highly
widely usedmetrics in sequential recommendation: Hit Ratio (HR@K)
and Normalized Discounted Cumulative Gain (NDCG@K). HR@K
accurately measures the proportion of test cases where the ground
truth item appears in the top-K recommendation list, effectively re-
flecting themodel’s ability to recall relevant items [33, 70]. NDCG@K
further considers the position of the ground truth item within the
top-K list, assigning higher weights to higher positions, thus evalu-
ating both precision and ranking quality [38, 65]. We report results
for HR@𝐾 ∈ {5, 10, 20}, and NDCG@𝐾 ∈ {5, 10, 20} to compre-
hensively evaluate recommendation performance at different levels
of K. Following standard practice, we employ the leave-one-out
strategy [6] for evaluation.

4.1.3 Backbones Since our method is compatible with different
sequential recommendation models, we choose the following three
representatives as the backbone [66].
• GRU4Rec [23]: One of the pioneering works in sequential rec-
ommendation that leverages Gated Recurrent Units to effectively
capture temporal dynamics in user-item interaction sequences.

• SASRec [30]: This approach introduces self-attention mecha-
nisms into sequential recommendation, enabling the model to
adaptively focus on relevant historical interactions while main-
taining computational efficiency.

• Caser [58]: By employing both horizontal and vertical convolu-
tional filters, this CNN-based method captures local and global
sequential patterns simultaneously to enhance accuracy.

4.1.4 Baselines We compare our approach with representative
denoising sequential recommendation methods, including directly
removing noise items and employing data augmentation:

• STEAM [40]: Self-correcting approach that modifies sequences
through keep, delete, or insert operations using self-supervised
learning to identify and fix misclicked items.

• DCRec [71]: Denoising contrastive framework that separates
user conformity from genuine interests using a multi-channel
weighting network and contrastive learning.

• HSD [75]: Hierarchical sequence denoising model that learns
two-level item inconsistency signals to identify and remove noisy
interactions without requiring explicit noise labels.

• SSDRec [76]: Framework that uses multi-relation graphs for
cross-sequence patterns, injects global information at specific
positions, and applies hierarchical denoising to identify noise in
both enhanced and original sequences.

4.1.5 Implementation Details Following common practices in
sequential recommendation, we set the embedding dimension to 64
and the hidden state dimension to 128 with 2 GRU layers. The model
is trained with a batch size of 32 and the Adam optimizer with a
learning rate of 1e-4. We use the Llama-3.1-8B-Instruct [18] model
to generate semantic embeddings with llm2vec [5] and implement
early stopping with a patience of 10 epochs to prevent overfitting.

4.2 Overall Performance (RQ1 and RQ2)
Tables 2 and 3 present the overall performance comparison of
our proposed method against baseline and recent denoising mod-
els across four datasets. We evaluate IADSR on three backbones
(GRU4Rec, Caser, SASRec) and compare it with HSD, SSDRec, as
well as standalone frameworks DCRec and STEAM.

From the experimental results, we observe the following findings:
• Effectiveness of Our Approach: IADSR consistently outper-
forms the second-best approaches across different backbones and
datasets. On Beauty with GRU4Rec, compared to the second-best
method (HSD), IADSR shows average improvements of 24.6%
across all metrics (31.0% on HR@5, 8.5% on HR@10, while HSD
leads on HR@20, 51.1% on NDCG@5, 31.9% on NDCG@10, and
14.1% on NDCG@20). On Toys with Caser, the average gain
reaches 36.3%. On ML-100K with SASRec, IADSR achieves a 7.8%
average gain across metrics. These consistent gains highlight its
robust denoising capability.

• Performance Across Different Backbones: Improvements
hold regardless of the backbone. Even with SASRec, the strongest
baseline, IADSR raises HR@20 on Beauty from 0.0554 to 0.0836
(+50.9

• Comparison with Other Denoising Methods: IADSR outper-
forms HSD and SSDRec on most metrics. While SSDRec occasion-
ally excels (e.g., HR@20 with GRU4Rec on Beauty), IADSR pro-
vides more balanced improvements, achieving average HR@10
gains of 10.2%, 8.4%, and 6.7% on Beauty, Sports, and Toys, re-
spectively.

• Dataset-specific Observations: Gains are most pronounced
on Beauty and Sports, suggesting higher noise levels. On ML-
100K, improvements are smaller, implying less or different noise
patterns.
Our denoising framework consistently outperforms state-of-the-

art methods across multiple backbones by integrating semantic
and collaborative signals to effectively mitigate noise in sequential
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Table 2: Overall performance comparison on Beauty, Sports and Toys dataset. Boldface denotes the best result and underline
indicates the second-best results. ‘*’ denotes significant improvement (i.e., two-sided t-test with p < 0.05).

Dataset Model HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20

Beauty

GRU4Rec

base 0.0174 0.0249 0.0351 0.0120 0.0144 0.0169
HSD 0.0229 0.0365 0.0520* 0.0141 0.0185 0.0234

SSDRec 0.0218 0.0360 0.0510 0.0136 0.0181 0.0229
IADSR 0.0300* 0.0396* 0.0486 0.0213* 0.0244* 0.0267*

Caser

base 0.0075 0.0130 0.0216 0.0043 0.0060 0.0082
HSD 0.0137 0.0214 0.0327 0.0086 0.0111 0.0140

SSDRec 0.0142 0.0235 0.0363 0.0085 0.0115 0.0147
IADSR 0.0178* 0.0297* 0.0469* 0.0094* 0.0137* 0.0188*

SASRec

base 0.0267 0.0385 0.0554 0.0184 0.0218 0.0261
HSD 0.0245 0.0436 0.0668 0.0140 0.0201 0.0260

SSDRec 0.0342* 0.0538* 0.0782 0.0196 0.0259 0.0321
IADSR 0.0323 0.0538* 0.0836* 0.0202* 0.0272* 0.0349*

STEAM 0.0292 0.0395 0.0515 0.0201 0.0234 0.0264
DCRec 0.0110 0.0202 0.0370 0.0066 0.0095 0.0137

Sports

GRU4Rec

base 0.0059 0.0940 0.0150 0.0037 0.0048 0.0060
HSD 0.0136 0.0186 0.0303 0.0077 0.0099 0.0129

SSDRec 0.0122 0.0196 0.0318 0.0083 0.0107 0.0137
IADSR 0.0155* 0.0240* 0.0340* 0.0095* 0.0122* 0.0148*

Caser

base 0.0059 0.0081 0.0118 0.0026 0.0031 0.0048
HSD 0.0063 0.0119 0.0212 0.0043* 0.0061 0.0084

SSDRec 0.0060 0.0123 0.0213 0.0042 0.0062 0.0084
IADSR 0.0080* 0.0152* 0.0258* 0.0041 0.0063* 0.0089*

SASRec

base 0.0112 0.0178 0.0269 0.0074 0.0093 0.0102
HSD 0.0119 0.0202 0.0309 0.0078 0.0108 0.0127

SSDRec 0.0132 0.0212 0.0338 0.0099 0.0111 0.0131
IADSR 0.0155* 0.0260* 0.0383* 0.0101* 0.0114* 0.0139*

STEAM 0.0149 0.0182 0.0250 0.0078 0.0101 0.0122
DCRec 0.0080 0.0141 0.0288 0.0068 0.0088 0.0105

Toys

GRU4Rec

base 0.0110 0.0125 0.0133 0.0080 0.0085 0.0091
HSD 0.0167 0.0266 0.0413* 0.0109 0.0142 0.0179

SSDRec 0.0140 0.0227 0.0354 0.0090 0.0118 0.0149
IADSR 0.0189* 0.0281* 0.0389 0.0130* 0.0160* 0.0186*

Caser

base 0.0054 0.0089 0.0145 0.0035 0.0046 0.0060
HSD 0.0066 0.0124 0.0192 0.0041 0.0060 0.0076

SSDRec 0.0065 0.0116 0.0198 0.0044 0.0060 0.0081
IADSR 0.0098* 0.0163* 0.0224* 0.0080* 0.0108* 0.0129*

SASRec

base 0.0288 0.0394 0.0468 0.0162 0.0216 0.0254
HSD 0.0299 0.0451 0.0649 0.0180* 0.0229 0.0279

SSDRec 0.0303* 0.0473 0.0689 0.0172 0.0226 0.0281
IADSR 0.0297 0.0483* 0.0697* 0.0172 0.0230* 0.0287*

STEAM 0.0154 0.0330 0.0630 0.0087 0.0150 0.0214
DCRec 0.0204 0.0379 0.0655 0.0123 0.0178 0.0247

recommendation, demonstrating robust and versatile performance
across datasets.

4.3 Ablation Study (RQ3)
To validate the effectiveness of each component in our proposed
framework, we conduct an ablation study on the Beauty dataset.
Table 4 presents the results with different variants of our model.
Specifically, we investigate the impact of different loss functions
and interest embeddings:
• w/o 𝑏𝑜𝑡ℎ: Removing both InfoNCE loss and reconstruction loss,
leaving only the basic cross-entropy loss.

• w/o L𝑖𝑛𝑓 𝑜 : Removing the InfoNCE loss that aligns with semantic
and collaborative embeddings.

• w/o L𝑟𝑒𝑐𝑜𝑛 : Removing the sequence reconstruction loss.
• Short-only: Using only short-term interests for noise detection.
• Long-only: Using only long-term interests for noise detection.
• Full Model: Our full model with all components.

The results demonstrate that removing both losses leads to sub-
stantial drops (–42.0% HR@5, –38.8% NDCG@5), confirming their
importance. L𝑖𝑛𝑓 𝑜 proves more critical than L𝑟𝑒𝑐𝑜𝑛, highlighting
the necessity of aligning semantic and collaborative spaces.
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Table 3: Overall performance comparison on Movielens-100k.

Dataset Model HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20

ML-100K

GRU4Rec

base 0.0180 0.0296 0.0607 0.0102 0.0152 0.0230
HSD 0.0148 0.0339 0.0732* 0.0094 0.0163 0.0252

SSDRec 0.0256 0.0511* 0.0721 0.0155 0.0217 0.0268
IADSR 0.0286* 0.0455 0.0696 0.0176* 0.0223* 0.0286*

Caser

base 0.0204 0.0361 0.0541 0.0104 0.0176 0.0210
HSD 0.0255 0.0456 0.0721 0.0147* 0.0214* 0.0271

SSDRec 0.0243 0.0424 0.0732 0.0142 0.0203 0.0278*
IADSR 0.0265* 0.0467* 0.0742* 0.0142 0.0207 0.0276

SASRec

base 0.0191 0.0350 0.0509 0.0114 0.0153 0.0200
HSD 0.0223* 0.0403 0.0742 0.0143 0.0190 0.0256

SSDRec 0.0223* 0.0435 0.0785 0.0140 0.0209* 0.0295
IADSR 0.0212 0.0477* 0.0827* 0.0145* 0.0205 0.0311*

STEAM 0.0207 0.0372 0.0563 0.0126 0.0178 0.0202
DCRec 0.0215 0.0424 0.0710 0.0135 0.0202 0.0279

Table 4: Ablation study on the Amazon Beauty dataset.
Variants HR@5 HR@10 HR@20 NDCG5 NDCG10 NDCG20

w/o 𝑏𝑜𝑡ℎ 0.0174 0.0249 0.0351 0.0120 0.0144 0.0169
w/o L𝑖𝑛𝑓 𝑜 0.0283 0.0346 0.0386 0.0202 0.0223 0.0233
w/o L𝑟𝑒𝑐𝑜𝑛 0.0213 0.0305 0.0416 0.0139 0.0168 0.0196

Short-only 0.0218 0.0329 0.0483 0.0144 0.0180 0.0219
Long-only 0.0225 0.0328 0.0456 0.0151 0.0181 0.0223
Full Model 0.0300 0.0396 0.0486 0.0196 0.0259 0.0321

Regarding interest embeddings, we observe that long-term in-
terests offer more stable signals than short-term ones, but the Full
Model outperforms both (with improvements of up to 33.3% in
HR@5 and 36.1% in NDCG@5 compared to Long-only), confirming
our hypothesis that combining both time scales offers the most
comprehensive view for identifying noise in user sequences.

4.4 Hyper-parameter Study (RQ4)
To understand the impact of the cross-modal consistency threshold
𝜃 on our framework’s performance, we conducted experiments
varying this parameter from -1.0 to 0.9. Figure 3 illustrates perfor-
mance trends across different metrics. We observe that performance
peaks around 𝜃 = −0.9 (with HR@5=0.03 and NDCG@5=0.0213)
and remains relatively stable across negative thresholds (-0.9 to
-0.1). However, as 𝜃 exceeds 0.7, we observe significant performance
degradation across all metrics.

These results indicate that moderate cross-modal alignment is
sufficient for effective noise identification. Setting 𝜃 too high forces
excessive agreement between semantic and collaborative signals,
potentially ignoring complementary information. Based on these
findings, we set 𝜃 = −0.9 as the default value in our framework.

4.5 Case Study (RQ5)
To provide qualitative insights into our model’s denoising capabil-
ity, we randomly selected two users from the Beauty dataset and
analyzed how our approach effectively identifies noisy interactions
by leveraging both semantic and collaborative signals.

Table 5 illustrates the denoising results across different meth-
ods (IADSR, HSD, Steam) for these selected users. The blue text
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Figure 3: (a) HR@5 and (b) NDCG@5 in hyper-parameter
study on 𝜃 .
indicates cold items (representing the 20% of items with the lowest
interaction counts), the red text represents hot items (the 20% with
the highest interaction counts), and the black text denotes normal
items, respectively. Furthermore, we display the user profile derived
from their historical interaction patterns.

4.5.1 User Preference Analysis For User 22099, IADSR precisely
filtered the irrelevant hair styling product while retaining body-
contouring items, outperforming HSD and STEAM, which misclas-
sified relevant products.

For User 19852, IADSR flagged only the “Beauty Without Cru-
elty” lotion as noise, while preserving other cold items consistent
with the user’s beauty interests. HSD overgeneralized by filtering
all three natural products, including relevant ones such as the Essie
base coat and Aloe Vera gel. STEAM performed worse, incorrectly
marking an anti-wrinkle complex and eye makeup as noise despite
the user’s clear interest in anti-aging skincare and eye products.
These cases demonstrate IADSR’s ability to balance recommenda-
tion diversity with precise noise filtering, ensuring both relevance
and coverage.

5 Related Work
In this section, we summarize the related works on sequential
recommender systems and denoising sequential recommendation.

5.1 Sequential Recommender System
The sequential recommendation focuses on capturing temporal
dynamics in user behaviors to predict future interactions. Early ap-
proaches used Markov Chain-based models [53], which were later
superseded by deep learning methods [39], including GRU4Rec [23]
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Table 5: A case study to demonstrate the effectiveness of IADSR in denoising cold items.
User ID IADSR HSD Steam User Profile

22099 Bedhead
Hook Up 1/2
STRAIGHT

Bedhead
Hook Up 1/2
STRAIGHT

Skinny Cream
Clinically
Proven Cellulite
Reduction, 6
Ounce

Slim Extreme
3d Super-
concentrated
Serum Shap-
ing Buttocks,
200mL

Palmers Cocoa
Butter Bust
Firming Cream
4.4oz

Based on the user’s historical in-
teractions, this user is primarily in-
terested in body contouring, firm-
ing, and weight loss-related beauty
products, with a particular focus on
shaping creams and anti-cellulite
products targeting specific body ar-
eas (buttocks, bust).

19852 Beauty With-
out Cruelty
Fragrance Free
Hand & Body
Lotion, 100 %
Vegetarian, 16 fl
ozs

Beauty With-
out Cruelty
Fragrance Free
Hand & Body
Lotion, 100 %
Vegetarian, 16 fl
ozs

Essie Ridge
Filler Base Coat,
0.46 oz

Fruit Of The
Earth 100% Aloe
Vera 6oz. Gel
Tube

Hydroxatone
AM/PM Anti-
Wrinkle Com-
plex SPF 15

Blinc Kiss Me
Mascara, Dark
Brown

Alkaline

Based on the user’s historical inter-
actions, this user has comprehen-
sive beauty interests across multi-
ple categories, showing particular
focus on anti-aging skincare, nat-
ural/vegetarian beauty products,
eye makeup, hair care tools, and
various face and body treatments
from both high-end and drugstore
brands.

with RNNs and Caser [58] with CNNs. Recently, Transformer-based
models like SASRec [30] have achieved consistently superior per-
formance by leveraging self-attention mechanisms to model item
relationships in user sequences.

However, these models lack noise mitigation mechanisms, mak-
ing them vulnerable to accidental clicks or exploratory behaviors.
IADSR addresses this by integrating LLM semantic knowledge with
collaborative signals to distinguish preferences from noise.

5.2 Denoising Sequential Recommendation
Recent works on denoising sequential recommendation can be
grouped into two categories. The first type relies solely on col-
laborative signals (ID-based interactions). For example, HSD [75]
detects inconsistency signals to drop noisy items, while ADT [64]
prunes high-loss interactions during training. Other approaches,
such as STEAM [40], SSDRec [76], DCRec [71], and DCF [22], adjust
or reweight noisy items through self-correction, graph modeling,
or debiased contrastive learning. The second type incorporates ad-
ditional modalities beyond IDs. LLM4DSR [59] leverages large lan-
guage models to identify and replace noisy items, while LLaRD [63]
extracts semantic preference patterns from textual contexts.

While ID-based methods risk overlooking the semantic richness
of user behaviors, multimodal approaches struggle to align hetero-
geneous signals with collaborative sequences. Existing denoising
strategies also face notable limitations: (1) reliance on collaborative
signals makes them ineffective for cold items with sparse inter-
actions; (2) LLM-based methods often demand costly fine-tuning;

and (3) many are tied to specific architectures, limiting general-
izability. In contrast, our framework leverages LLM embeddings
to improve denoising, remains compatible with diverse sequential
recommenders, and is particularly effective for cold items where
collaborative signals are insufficient.

6 Conclusion
In this paper, we proposed IADSR, a novel framework that inte-
grates semantic knowledge from large language models with collab-
orative signals for denoising sequential recommendation. Through
a two-stage process of cross-modal alignment, noise detection, and
sequence reconstruction, IADSR effectively preserves real user pref-
erences. Experiments on four public datasets show that it consis-
tently outperforms state-of-the-art denoising methods across dif-
ferent sequential recommendation backbones.
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